Views: 1155
Submissions: 20
Favs: 33
Writer | Registered: May 10, 2015 11:40:05 PM
З д р а в с т в у й т е !
___________________
I'm Lobster! I know what you're thinking! "hey, what the hell he ain't a lobster" and you're absolutely right! Yup!
I'm just a small ol' little red fox.
I totally roleplay too. Always looking for new people to have fun with.
A L W A Y S
so if you wanna just note me up and we can arrange things.
bte I'm like totally long term and really graphic and stuff so be warned. I'll tell you more later.
___________________

______
I also like driving things and this small list of people
• 
• 
• 
mmm.... sure....
• 
___________________
Your move dragon
also I have a nsfw account somewhere around here. I won't tell unless you super nag me to death. Favorites
This user has no favorites.
Stats
Comments Earned: 151
Comments Made: 219
Journals: 2
Comments Made: 219
Journals: 2
Featured Journal
Literally don't read this
8 years ago
Production
Main articles: Speech production and Linguistics
Speech production is a multi-step process by which thoughts are generated into spoken utterances. Production involves the selection of appropriate words and the appropriate form of those words from the lexicon and morphology, and the organization of those words through the syntax. Then, the phonetic properties of the words are retrieved and the sentence is uttered through the articulations associated with those phonetic properties.[1]
In linguistics (articulatory phonetics), articulation refers to how the tongue, lips, jaw, vocal cords, and other speech organs used to produce sounds are used to make sounds. Speech sounds are categorized by manner of articulation and place of articulation. Place of articulation refers to where the airstream in the mouth is constricted. Manner of articulation refers to the manner in which the speech organs interact, such as how closely the air is restricted, what form of airstream is used (e.g. pulmonic, implosive, ejectives, and clicks), whether or not the vocal cords are vibrating, and whether the nasal cavity is opened to the airstream.[2] The concept is primarily used for the production of consonants, but can be used for vowels in qualities such as voicing and nasalization. For any place of articulation, there may be several manners of articulation, and therefore several homorganic consonants.
Normal human speech is pulmonic, produced with pressure from the lungs, which creates phonation in the glottis in the larynx, which is then modified by the vocal tract and mouth into different vowels and consonants. However humans can pronounce words without the use of the lungs and glottis in alaryngeal speech, of which there are three types: esophageal speech, pharyngeal speech and buccal speech (better known as Donald Duck talk).
Speech Errors[edit]
Main article: Speech error
Speech production is a complex activity, and as a consequence errors are common, especially in children. Speech errors come in many forms and are often used to provide evidence to support hypotheses about the nature of speech.[3] As a result, speech errors are often used in the construction of models for language production and child language acquisition. For example, the fact that children often make the error of over-regularizing the -ed past tense suffix in English (e.g. saying 'singed' instead of 'sang') shows that the regular forms are acquired earlier.[4][5] Speech errors associated with certain kinds of aphasia have been used to map certain components of speech onto the brain and see the relation between different aspects of production: for example, the difficulty of expressive aphasia patients in producing regular past-tense verbs, but not irregulars like 'sing-sang' has been used to demonstrate that regular inflected forms of a word are not individually stored in the lexicon, but produced from affixation of the base form.[6]
Perception[edit]
Main article: Speech perception
Speech perception refers to the processes by which humans can interpret and understand the sounds used in language. The study of speech perception is closely linked to the fields of phonetics and phonology in linguistics and cognitive psychology and perception in psychology. Research in speech perception seeks to understand how listeners recognize speech sounds and use this information to understand spoken language. Research into speech perception also has applications in building computer systems that can recognize speech, as well as improving speech recognition for hearing- and language-impaired listeners.[7]
Speech perception is categorical, in that people put the sounds they hear into categories rather than perceiving them as a spectrum. People are more likely to be able to hear differences in sounds across categorical boundaries than within them. A good example of this is voice onset time (VOT). For example, Hebrew speakers, who distinguish voiced /b/ from voiceless /p/, will more easily detect a change in VOT from -10 ( perceived as /b/ ) to 0 ( perceived as /p/ ) than a change in VOT from +10 to +20, or -10 to -20, despite this being an equally large change on the VOT spectrum.[8]
Repetition[edit]
Main article: Speech repetition
In speech repetition, speech being heard is quickly turned from sensory input into motor instructions needed for its immediate or delayed vocal imitation (in phonological memory). This type of mapping plays a key role in enabling children to expand their spoken vocabulary. Masur (1995) found that how often children repeat novel words versus those they already have in their lexicon is related to the size of their lexicon later on, with young children who repeat more novel words having a larger lexicon later in development. Speech repetition could help facilitate the acquisition of this larger lexicon.[9]
Literally
Main articles: Speech production and Linguistics
Speech production is a multi-step process by which thoughts are generated into spoken utterances. Production involves the selection of appropriate words and the appropriate form of those words from the lexicon and morphology, and the organization of those words through the syntax. Then, the phonetic properties of the words are retrieved and the sentence is uttered through the articulations associated with those phonetic properties.[1]
In linguistics (articulatory phonetics), articulation refers to how the tongue, lips, jaw, vocal cords, and other speech organs used to produce sounds are used to make sounds. Speech sounds are categorized by manner of articulation and place of articulation. Place of articulation refers to where the airstream in the mouth is constricted. Manner of articulation refers to the manner in which the speech organs interact, such as how closely the air is restricted, what form of airstream is used (e.g. pulmonic, implosive, ejectives, and clicks), whether or not the vocal cords are vibrating, and whether the nasal cavity is opened to the airstream.[2] The concept is primarily used for the production of consonants, but can be used for vowels in qualities such as voicing and nasalization. For any place of articulation, there may be several manners of articulation, and therefore several homorganic consonants.
Normal human speech is pulmonic, produced with pressure from the lungs, which creates phonation in the glottis in the larynx, which is then modified by the vocal tract and mouth into different vowels and consonants. However humans can pronounce words without the use of the lungs and glottis in alaryngeal speech, of which there are three types: esophageal speech, pharyngeal speech and buccal speech (better known as Donald Duck talk).
Speech Errors[edit]
Main article: Speech error
Speech production is a complex activity, and as a consequence errors are common, especially in children. Speech errors come in many forms and are often used to provide evidence to support hypotheses about the nature of speech.[3] As a result, speech errors are often used in the construction of models for language production and child language acquisition. For example, the fact that children often make the error of over-regularizing the -ed past tense suffix in English (e.g. saying 'singed' instead of 'sang') shows that the regular forms are acquired earlier.[4][5] Speech errors associated with certain kinds of aphasia have been used to map certain components of speech onto the brain and see the relation between different aspects of production: for example, the difficulty of expressive aphasia patients in producing regular past-tense verbs, but not irregulars like 'sing-sang' has been used to demonstrate that regular inflected forms of a word are not individually stored in the lexicon, but produced from affixation of the base form.[6]
Perception[edit]
Main article: Speech perception
Speech perception refers to the processes by which humans can interpret and understand the sounds used in language. The study of speech perception is closely linked to the fields of phonetics and phonology in linguistics and cognitive psychology and perception in psychology. Research in speech perception seeks to understand how listeners recognize speech sounds and use this information to understand spoken language. Research into speech perception also has applications in building computer systems that can recognize speech, as well as improving speech recognition for hearing- and language-impaired listeners.[7]
Speech perception is categorical, in that people put the sounds they hear into categories rather than perceiving them as a spectrum. People are more likely to be able to hear differences in sounds across categorical boundaries than within them. A good example of this is voice onset time (VOT). For example, Hebrew speakers, who distinguish voiced /b/ from voiceless /p/, will more easily detect a change in VOT from -10 ( perceived as /b/ ) to 0 ( perceived as /p/ ) than a change in VOT from +10 to +20, or -10 to -20, despite this being an equally large change on the VOT spectrum.[8]
Repetition[edit]
Main article: Speech repetition
In speech repetition, speech being heard is quickly turned from sensory input into motor instructions needed for its immediate or delayed vocal imitation (in phonological memory). This type of mapping plays a key role in enabling children to expand their spoken vocabulary. Masur (1995) found that how often children repeat novel words versus those they already have in their lexicon is related to the size of their lexicon later on, with young children who repeat more novel words having a larger lexicon later in development. Speech repetition could help facilitate the acquisition of this larger lexicon.[9]
Literally
FA+





